

Opgave 1
(i) (a) zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
 zipWith z (a:as) (b:bs) = z a b : zipWith z as bs
 zipWith _ _ _ = []

 (b) (map zipWith) :: [a -> b -> c] -> [[a] -> [b] -> [c]]
(ii) (a) flip :: (a -> b -> c) -> b -> a -> c
 (b) 6

Opgave 2
Basis: foldr f z ([] ++ ys)
 => [] ++ ys = ys
 foldr f z ys
 => foldr _ init [] = init
 foldr f (foldr f z ys) []
 => xs = []
 foldr f (foldr f z ys) xs

Inductiehypothese: foldr f z (xs ++ ys) = foldr f (foldr f z ys) xs

Bewijs: foldr f (foldr f z ys) x:xs
 => definitie foldr
 f x (foldr f (foldr f z ys) xs)
 => inductiehypothese
 f x (foldr f z (xs ++ ys))
 => definitie foldr
 foldr f z ((x:xs) ++ ys)

Opgave 3
(i) merge :: Ord a => [a] -> [a] -> [a]
 merge xs [] = xs
 merge [] ys = ys
 merge (x:xs) (y:ys)
 | x > y = y:merge (x:xs) ys
 | y > x = x:merge xs (y:ys)
 | otherwise = x:merge x sys

(ii) mergeSort :: Ord a => [a] => [a]
 mergeSort [] = []
 mergeSort (x:[]) = [x]
 mergeSort xs = merge (mergeSort left) (mergeSort right)
 where left = take halflength xs
 right = drop halflength xs
 halflength = (length xs) `div` 2

(iii) quickSort :: Ord a => [a] => [a]
 quickSort [] = []
 quickSort (x:[]) = [x]
 quickSort (x:xs) = left ++ [x] ++ right
 where left = quickSort (filter (flip (<) x) xs)
 right = quickSort (filter (< x) xs)

(iv) hs :: [Int]
 hs = merge (map (*2) hs) (map (*3) hs)

Opgave 4
(i) voegtoe :: a -> [a] -> [[a]]
 voegtoe x [] = [[x]]
 voegtoe x (y:ys) = [(x:y:ys)] ++ map (y:) (voegtoe x ys)

(ii) voegtoeL :: a -> [[a]] -> [[a]]
 voegtoeL = concat [voegtoe x xs | xs <- xxs]

Opgave 5
(i) maxLabel :: LBoom -> Int
 maxLabel (LBlad x) = x
 maxLabel (LKnoop x li re) = max x (max (maxLabel x li) (maxLabel x ri))

(ii) labelD :: Int -> Boom -> LBoom
 labelD n (Blad) = (LBlad n)
 labelD n (Knoop li re) = (LKnoop n (labelD (2*n) li) (labelD (2*n+1) re)

